
	

	 1	

A	computational	thinking	requirement	for	MIT	
undergraduates	

	
Report	of	the	working	group	on	computational	thinking	

January	2017	
	
Summary	of	findings:	
	
During	the	spring	of	2016,	Chair	of	the	Faculty	Krishna	Rajagopal	and	Dean	for	
Undergraduate	Education	Denny	Freeman	assembled	a	group	of	faculty,	
representing	all	five	schools	of	the	Institute,	to	conduct	an	in-depth	study	of	the	role	
of	“algorithmic	reasoning/computational	thinking”	in	the	context	of	the	education	of	
MIT	undergraduates.		The	group	was	asked	to	consider	a	set	of	questions	relating	to	
this	topic,	including	whether	formal	exposure	to	algorithmic/computational	
thinking	should	be	required	of	all	MIT	undergraduate	students.	
	
A	summary	of	the	key	findings	of	the	working	group	includes:	

• Computational	thinking	should	play	an	explicit	role	in	the	formal	education	
of	all	undergraduate	students	at	MIT.		Computational	thinking	provides	a	
distinct	type	of	rigorous	thought	of	important	intellectual	value;	it	requires	
and	develops	important	modes	of	communication;	it	acknowledges	the	need	
to	understand	the	transformational	impact	of	computation	in	other	
disciplines;	and	it	creates	opportunities	and	access	for	our	students	and	
graduates.	

• In	response	to	varied	community	interpretations	of	the	topic,	the	working	
group	developed	a	notion	of	computational	thinking	and	algorithmic	
reasoning,	defining	them	both	in	and	of	themselves	and	in	relation	to	other	
modes	of	thought.		This	notion	includes	the	assertion	that	computational	
thinking	is	broader	than	a	proficiency	in	computer	programming,	although	
programming	languages	provide	a	particularly	useful	framework	for	
understanding	the	fundamentals	and	applications	of	computational	thinking.	

• While	a	significant	portion	of	the	student	body	currently	takes	a	relevant	
course	in	computation,	coverage	is	not	universal.		The	working	group	
believes	that	just	as	every	student	learns	critical	thinking	and	inductive	and	
deductive	reasoning	as	pathways	to	analysis,	understanding	and	discovery	
through	their	humanities,	arts	and	social	science	subjects	and	through	the	
current	science	General	Institute	Requirements,	so	too	should	every	student	
learn	computational	thinking.		Thus,	the	working	group	recommends	that	all	
undergraduates	be	required	to	take	at	least	one	subject	offering	in	
computation.	

• Computational	thinking	involves	more	than	the	skill	of	computer	
programming	or	the	ability	to	use	computer	tools;	it	includes	fundamental	
modes	of	reasoning	about	the	rendering	of	physical	or	social	systems	in	a	



	

	 2	

manner	that	enables	computational	experiments	to	complement	physical	or	
social	ones.	Formal	exposure	to	these	concepts	is	important	for	all	students.	

• The	working	group	recommends	that	the	Institute	proceed	with	a	
consideration	of	mechanisms	by	which	a	computation	requirement	could	be	
instituted	for	all	undergraduate	students,	while	addressing	the	impact	adding	
an	additional	degree	requirement	or	substituting	a	current	requirement	
would	have	on	student	load	and	while	addressing	the	need	to	connect	
computational	thinking	to	domain-specific	contexts	across	different	
intellectual	disciplines.		The	working	group	also	recommends	that	this	
consideration	examine	the	impact	of	potential	changes	in	requirements	on	
ABET	accreditation	of	engineering	degrees.		

• The	working	group	report	outlines	several	ways	in	which	a	requirement	in	
computational	thinking	might	be	implemented,	and	explores	the	advantages	
and	challenges	of	each	approach.		Options	for	incorporating	a	computational	
requirement	must	carefully	consider	the	tight	constraints	imposed	on	
students	by	the	current	Institute-wide	requirements	and	by	additional	
departmental	degree	requirements,	and	should	avoid	adding	a	significant	
burden	on	our	students.		 	



	

	 3	

Background:	
	
During	the	spring	of	2016,	Chair	of	the	Faculty	Krishna	Rajagopal	and	Dean	for	
Undergraduate	Education	Denny	Freeman		assembled	a	group	of	faculty,	
representing	all	five	schools	of	the	Institute,	to	conduct	an	in-depth	study	of		the	
meaning	of	the	phrases	“algorithmic	reasoning”	and	“computational	thinking”	in	the	
context	of	the	education	of	MIT’s	undergraduates	across	all	five	schools.		Their	
charge	to	this	group	included	the	following	questions:	
 
1)	How	do	faculty,	students	and	alumni	in	different	fields	of	endeavor,	across	the	full	
breadth	represented	by	MIT’s	five	schools,	use	computational	thinking?		
	
2)	What,	if	any,	is	the	common	intellectual	framework	that	people	across	MIT	employ	
when	they	speak	of	computational	thinking	and	algorithmic	reasoning?	
	
3)	To	what	extent	are	algorithmic	reasoning	and	computational	thinking	already	
being	taught?	
	
4)	Should	we	acknowledge	algorithmic	and	computational	thinking	as	an	explicit	
expectation	of	all	our	graduates?		
	
5)	If	yes,	what	are	the	key	elements	of	algorithmic	and	computational	thinking	and	
what	are	the	associated	learning	objectives	and	measurable	outcomes	for	knowledge,	
skills	and	attitudes?		
	
6)	If	yes,	does	it	matter	when	during	their	careers	at	MIT	our	students	are	exposed	to	
computational	thinking	and	algorithmic	reasoning?		
	
7)	What	are	our	peer	institutions	doing?		
	
For	all	of	these	questions,	the	working	group	was	charged	to	consider	the	diversity	
of	meanings,	of	modes	of	knowledge,	and	of	learning	objectives	across	MIT’s	schools	
and	the	range	of	endeavors	of	our	students	and	alumni.		
	
This	report	summarizes	the	findings	of	the	group	in	response	to	these	questions.		
Based	on	the	group’s	findings,	the	report	articulates	some	potential	actions	and	
changes	in	requirements,	any	of	which	would	advance	the	goal	of	improving	the	
computational	thinking	skills	of	MIT	undergraduates.	The	report	does	not	specify	
any	particular	change	in	policy	nor	the	specific	details	necessary	to	implement	any	
of	these	improvements,	since	these	recommendations	were	not	part	of	the	charge.	
	
Process:	
	
The	working	group	engaged	in	a	series	of	activities	to	solicit	input	from	across	the	
Institute,	including	the	following:		



	

	 4	

• The	Chair	of	the	Faculty	and	the	Dean	for	Undergraduate	Education	sent	an	
email	to	every	faculty	member	soliciting	input.		The	working	group	discussed	
the	17	responses	received	by	email,	as	well	as	additional	comments	and	
suggestions	provided	in	person	by	others.		

• The	Chair	and	Dean	sent	a	similar	message	to	the	student	body	of	MIT.	
Though	we	expect	that	student	interest	in	the	topic	is	high,	only	2	responses	
were	received	and	discussed,	perhaps	because	of	the	timing	of	the	working	
group’s	activities.	

• Members	of	the	working	group	contacted	every	academic	department	head,	
and	either	engaged	directly	with	the	department	head	or	with	a	designated	
representative,	soliciting	input	on	the	questions	posed	in	the	charge	to	the	
group.	

• The	working	group	solicited	data	from	the	Registrar	on	recent	enrolments	of	
undergraduate	students	in	classes	that	teach	and	cultivate	computational	
thinking.	

• The	working	group	examined	the	curricula	and	requirements	of	peer	
institutions.	

• Meeting	extensively	over	the	late	spring	and	summer	terms,	the	working	
group	debated	and	discussed	issues	and	options	related	to	the	charge.	

• The	working	group	issued	a	draft	report	early	in	the	fall	term	of	2016,	and	
solicited	comments	on	this	report	from	the	entire	MIT	community.		
Comments	were	received	from	individual	faculty,	students	and	alumni.		
Comments	were	also	received	from	the	Committee	on	the	Undergraduate	
Program,	and	from	the	Academic	Advisory	Council	of	the	Undergraduate	
Association.		All	comments	were	then	discussed	by	the	working	group	and	
appropriate	revisions	to	the	report	based	on	that	discussion	were	
incorporated	into	the	final	report.	

	
	
What	is	“computational/algorithmic	thinking”	and	is	it	relevant	to	the	
education	of	every	MIT	undergraduate	student?	
	
The	working	group	spent	considerable	time	discussing	the	concepts	of	
computational	thinking	and	algorithmic	reasoning.		The	term	“computational	
thinking”	dates	at	least	back	to	Seymour	Papert	in	1980,	although	a	commonly	
accepted	formal	definition	of	the	term	is	still	under	debate.		One	common	definition	
of	computational	thinking,	attributed	to	Jeannette	Wing,	is:		

the	thought	processes	involved	in	formulating	a	problem	and	expressing	
its	solution(s)	in	such	a	way	that	an	information	processor	–	human	or	
machine	–	can	effectively	carry	out	that	solution.			

Such	a	definition	clearly	overlaps	with	several	other	formalized	modes	of	thinking	
(such	as	mathematical	or	logical);	however,	the	focus	on	a	detailed,	ordered	
sequence	of	operations	that	can	be	executed	in	a	disciplined	manner	(i.e.,	
algorithmic	design)	by	an	information	processor	distinguishes	this	approach	from	



	

	 5	

others.		This	definition	also	distinguishes	computational	thinking	from	computer	
literacy	(the	ability	to	use	computational	tools	as	black	box	abstractions)	or	the	
knowledge	of	a	specific	programming	language.			
	
While	the	terms	“computational	thinking”	or	“algorithmic	reasoning”	may	have	
different	connotations	in	different	disciplines,	there	is	a	clear	sense	across	the	
Institute	that	there	is	a	common	experience	of	using	computation	as	a	mode	of	
thought,	and	that	this	is	more	than	acquisition	of	programming	skills.		This	
perspective	has	been	articulated	in	the	past,	for	example,	in	the	2010	National	
Research	Council’s	report	on	Computational	Thinking:	
	

As	the	use	of	computational	devices	has	become	widespread,	there	is	a	need	to	
understand	the	scope	and	impact	of	what	is	sometimes	called	the	Information	
Revolution	or	the	Age	of	Digital	Information…[H]owever,	most	efforts	have	
not	focused	on	fundamental	concepts.	

	
The	report	continues	by	listing	three	common	approaches	(computer	literacy,	
particular	programming	languages,	and	programming	applications)	before	
distinguishing	computational	thinking	as	independent	from	any	of	them:		

	
But	in	the	view	of	many	computer	scientists,	these	three	major	approaches—
although	useful	and	arguably	important—should	not	be	confused	with	
learning	to	think	computationally.	In	this	view,	computational	thinking	is	a	
fundamental	analytical	skill	that	everyone,	not	just	computer	scientists,	can	
use	to	help	solve	problems,	design	systems,	and	understand	human	behavior.	
As	such,	they	believe	that	computational	thinking	is	comparable	to	the	
mathematical,	linguistic,	and	logical	reasoning	that	is	taught	to	all	children.	
This	view	mirrors	the	growing	recognition	that	computational	thinking	(and	
not	just	computation)	has	begun	to	influence	and	shape	thinking	in	many	
disciplines—Earth	sciences,	biology,	and	statistics,	for	example.	Moreover,	
computational	thinking	is	likely	to	benefit	not	only	other	scientists	but	also	
everyone	else—bankers,	stockbrokers,	lawyers,	car	mechanics,	salespeople,	
health	care	professionals,	artists,	and	so	on.	

	
The	views	expressed	in	that	summary	loudly	echo	what	the	working	group	found	in	
its	own	investigations	and	discussions	–	that	computational	thinking	involves	more	
than	the	skill	of	computer	programming	or	the	ability	to	use	computer	tools	such	as	
spreadsheets	or	visualization	programs,	and	that	the	importance	of	a	grounding	in	
computational	thinking,	especially	for	MIT	undergraduates,	is	broader	than	specific	
disciplinary	needs	for	computer	programming	skills.		
	
While	there	may	not	be	a	universally	accepted	definition	of	computational	thinking,	
while	the	particular	instantiation	of	that	idea	may	vary	with	the	specifics	of	a	
discipline,	and	while	there	are	clear	ties	between	computational	thinking	and	other	
forms	of	reasoning	(mathematical,	logical,	linguistic),	there	is	also	a	widely	shared	
sense	among	the	faculty	across	the	Institute	that	an	understanding	of	the	



	

	 6	

foundations	and	tools	of	computation	–	e.g.,	abstraction,	modularity,	recursion	and	
iteration,	divide-and-conquer,	approximation	and	convergence	–	is	a	critical	tool	for	
any	student.	
	
The	working	group	thus	believes	that	computational	thinking	is	more	than	just	the	
skill	of	computer	programming.	It	involves	understanding	how	to	model	large	scale	
systems	using	appropriate	levels	of	abstraction	and	modularity,	it	utilizes	
mechanical	descriptions	of	inference	to	analyze	complex	data	collections,	and	it	
provides	a	computational	complement	to	physical	experiments	on	real-world	
problems.		It	is,	however,	hard	to	grasp	or	articulate	concepts	of	computational	
thinking	absent	facility	in	a	distinct	and	unambiguous	language	in	which	to	describe	
them.		And	this	requires	the	use	of	a	computer	programming	language	as	a	
framework	within	which	to	explore	computational	concepts.			
	
A	few	students	suggested,	in	reaction	to	the	draft	report,	that	one	could	acquire	
facility	in	computational	thinking	without	learning	a	specific	programming	
language;	instead	focusing	on	theoretical	descriptions	and	formal	proofs.		The	
working	group	does	not	support	this	position.		As	articulated	above,	knowing	how	
to	program	a	computer	(as	opposed	to	merely	understanding	the	syntax	of	a	
computer	language)	is	a	requisite	skill	for	computational	thinking.			
	
In	addition,	the	ability	to	program	a	computer	is	an	important	life	skill,	for	several	
reasons:	

• Knowledge	of	computer	programming	(i.e.,	the	ability	to	write	code)	enables	
a	person	to	sift	through	vast	amounts	of	information.		It	also	permits	a	
person	to	combine	information	from	multiple	sources	in	useful	ways.	

• While	computational	reasoning	in	the	absence	of	programming	would	indeed	
demonstrate	that	an	answer	provided	by	the	program	would	be	correct,	
programming	knowledge	allows	the	correct	answer	to	be	determined,	
according	with	MIT’s	mission	of	providing	solutions	to	tackle	the	world’s	
great	challenges.	

• Computer	programming	skills	are	closely	related	to	the	skills	needed	to	
create	large,	complex	models	of	social,	physical,	or	biological	systems.	

	
The	concepts	of	computational	thinking,	especially	as	a	framework	for	rigorous	
reasoning	about	physical	and	social	systems,	can	provide	a	basis	for	augmenting	
other	intellectual	frameworks.		Many	faculty	members	consider	computational	
models	to	be	important	complements	to	theoretical	and	experimental	models.		Just	
as	historically	scientists	and	engineers	used	theoretical	models	to	guide	the	design	
of	experimental	validations,	and	experimental	observations	to	inform	the	creation	of	
theoretical	models,	today	engineers,	natural	scientists	and	social	scientists	also	use	
computational	models	of	physical	or	social	systems	to	enhance	understanding	of	
observed	or	predicted	phenomena.		For	these	colleagues,	the	increasing	reliance	on	
using	computational	models	to	further	their	research	(in	basic	science,	in	
development	of	technology,	or	in	modeling	of	social	systems)	requires	a	



	

	 7	

fundamental	understanding	of	computation	–	not	just	as	a	programming	tool,	but	
also	as	a	foundational	substrate	on	which	to	build	and	test	models.		Thus,	they	
suggest	that	students	should	experience	a	subject	that	uses	computation	to	
understand	physical	and	social	systems,	and	that	such	a	subject	should	include	
significant	programming	experience.			
	
In	this	view,	computation	can	become	a	framework	in	which	to	understand	physical	
and	social	systems,	to	complement	theoretical	and	experimental	models	with	
computational	ones,	and	to	use	programming	as	a	tool	to	ground	that	understanding	
of	a	system	and	to	devise	computational	experiments	to	complement	physical	ones.	
	
What	elements	are	essential	to	computational	thinking?	
	
Given	a	perspective	on	computational	thinking	as	“the	thought	processes	involved	in	
formulating	a	problem	and	expressing	its	solution(s)	in	such	a	way	that	an	
information	processor	–	human	or	machine	–	can	effectively	carry	out	that	solution”,	
one	can	then	ask	whether	there	are	essential	concepts	that	would	form	the	basis	for	
proficiency	in	computational	thinking.		While	such	a	discussion	may	vary	across	
disciplines,	the	working	group	found	that	the	following	basic	concepts	are	widely	
accepted	as	key	elements	in	computational	thinking:	

• Abstraction	of	processes:		capturing	common	patterns	of	operation	in	an	
algorithmic	description	that	can	be	generalized	and	applied	to	multiple	
instances	of	a	problem.		This	abstraction	includes	the	suppression	of	details	
of	the	procedure	from	users	(whether	humans	or	other	computational	
processes),	so	that	subsequent	computational	processes	can	utilize	the	
behavior	of	an	abstraction	without	regard	for	the	specifics	of	how	it	
produces	results.	

• Abstraction	of	data:	capturing	patterns	of	association	within	complex	
collections	of	data	to	structure	it	so	that	it	can	be	appropriately/efficiently/	
accurately	processed.		This	includes	identification	of	associated	elements	of	
data,	and	abstracting	out	specific	details	of	representation	of	data	elements	
from	the	use	of	such	data.	

• Decomposition:	reducing	a	computational	task	into	a	sequence	of	simpler	
tasks,	together	with	mechanisms	for	integrating	the	results	of	that	
decomposition	into	the	solution	to	the	original	problem.	

• Modularity:	understanding	how	to	characterize	the	solution	of	a	
computational	problem	as	a	sequence	of	operations,	each	of	which	can	be	
represented	as	a	separate,	abstract,	computational	problem;	together	with	
defined	operations	for	integrating	the	results	of	each	sub-operation	into	a	
solution	for	the	original	problem.	

• Iteration	and	recursion:	understanding	fundamental	approaches	for	
successively	reducing	the	solution	to	a	complex	problem	into	simpler	
versions	of	the	same	problem.	

	



	

	 8	

These	concepts	can	be	understood	abstractly;	however,	the	working	group	believes	
that	such	concepts	are	best	understood	within	the	specifics	of	a	language	of	
description	–	a	programming	language	that	provides	the	primitives	and	means	of	
combination	in	which	to	describe	and	deploy	these	concepts	on	real	problems.	
	
As	a	consequence,	the	working	group	has	used	the	following	description	as	a	
framework	in	its	deliberations:	
	

On	computational	thinking:	
	
When	our	working	group	uses	the	term	“computational	thinking”,	we	mean	
something	more	than	learning	the	syntax	of	a	computer	language.		We	want	
students	to	develop	skills	and	modes	of	thinking	so	that	they	can	construct	or	
recognize	useful,	well	written	algorithms,	can	implement	them,	and	can	use	
them	to	model	physical,	biological,	or	social	systems.			
	
Even	in	this	limited	sense,	any	proposed	requirement	in	computational	thinking	
should	not	require	that	MIT	students	develop	all	of	the	many	skills	that	are	
useful	in	this	area.		Rather,	any	proposed	requirement	should	ask	them	to	learn	
some	of	the	fundamental	skills,	and	to	practice	these	skills	by	developing	
algorithms	and	writing	computer	programs.	Such	an	experience	should	provide	
a	solid	foundation	on	which	subsequent	exploration	of	computation,	in	a	wide	
variety	of	disciplines,	can	be	undertaken.	

	
	
With	that	perspective,	and	based	on	the	information	gathered	from	across	the	
Institute,	the	working	group	believes	that	computational	thinking	should	play	
a	role	for	students	in	all	parts	of	the	Institute.	This	role	is	based	on	the	new	
intellectual	mode	of	thought	that	computational	thinking	provides,	rather	than	
purely	on	the	pragmatic	advantages	these	tools	might	give	at	MIT	or	in	professional	
life,	although	we	acknowledge	that	often	one	must	use	a	programming	language	as	a	
framework	within	which	to	describe	aspects	of	computational	thinking.		We	further	
believe	that	there	are	several	important	reasons	why	every	MIT	undergraduate	
student	should	be	articulate	in	the	role	of	computation	as	a	mode	of	thought	and	a	
means	of	communication:	
	

1. Computational	thinking	is	a	distinct	type	of	rigorous	thinking	that	is	of	
intellectual	value.		Computational	thinking,	similar	to	mathematical	or	
logical	thinking,	combines	structured	reasoning	with	creative	exploration	of	
paths	to	reach	a	result.	Computational	thinking	differs	from	mathematical	
thinking,	however,	in	the	emphasis	it	places	on	managing	complexity,	
limiting	resources,	and	effectiveness	in	modeling	physical	and	social	systems.		
It	also	differs	in	that	it	stresses	imperative	(or	“how	to”	knowledge)	rather	
than	declarative	(or	“what	is	true”	knowledge).		For	example,	axiomatic	
statements	about	properties	of	square	roots	are	different	from	algorithmic	
methods	to	compute	specific	square	roots.		Additionally,	computational	



	

	 9	

thinking	often	involves	making	informed	decisions	about	tradeoffs,	such	as	
between	model	detail	and	computational	speed,	and	understanding	how	
these	tradeoffs	may	have	consequences	for	the	accuracy,	or	even	the	social	
and	ethical	implications,	of	results.	In	this	way,	computational	thinking	
adopts	a	uniform	set	of	principles	and	clearly	established	tests	of	consistency	
that	provide	a	distinct	intellectual	framework	for	thinking	about	physical	and	
social	models.	

2. Computational	thinking	requires	and	develops	important	modes	of	
communication.		Most	people	have	had	the	experience	where	their	belief	
that	they	understand	how	something	works	is	shattered	the	moment	they	try	
to	describe	that	system	in	writing	or	teach	it	clearly	to	others.	Written	and	
oral	expression	crystallizes	vague	thoughts	into	concrete	ideas.	
Computationally	rigorous	thought,	expressed	in	code,	leads	to	a	clarity	of	
design	that	communicates	the	beliefs	of	the	code’s	author	to	others.		
Computational	thinking	involves	making	explicit	hierarchical	and	modular	
relationships;	algorithms	and	code	communicate	these	relationships	to	
others.		Articulation	of	ideas	in	a	manner	that	is	comprehensible	to	others	
requires	precision,	clarity,	and	logical	rigor,	and	thus	computational	
expression	can	complement	natural	language	as	a	means	of	communicating	
some	ideas	effectively.	

3. Computers	are	transformational	agents	in	the	21st	century.		They	are	
changing	the	way	that	work	is	carried	out.	They	are	changing	almost	every	
field	of	endeavor.	They	have	enormous	impacts	on	our	personal	lives	–	
through	novel	social	interactions	as	well	as	in	disrupting	industries	and	
professions.		It	is	important	for	every	student	to	develop	an	understanding	of	
computers	and	what	they	can	do.		Even	in	fields	where	not	all	students	use	
programming	in	their	coursework,	students	should	be	cognizant	of	the	
impact	of	computation	on	their	field.	In	this	way,	a	knowledge	of	paradigms	
of	computing	is	as	important	as	the	knowledge	of	the	paradigms	of,	for	
instance,	biology:	just	as	a	student	may	not	use	biological	concepts	in	their	
area	of	interest,	they	should	be	cognizant	of	questions,	challenges,	and	
opportunities	that	arise	in	biology	(or	in	physics,	chemistry,	mathematics,	or	
the	humanities,	arts,	and	social	sciences).	

4. Computational	training	creates	opportunities	and	access	for	our	
students	and	graduates.	There	are	many	opportunities	available	only	to	
those	who	understand	computational	thinking	and	computer	programming.	
These	opportunities	are	available	both	to	our	students	while	they	are	at	MIT	
(e.g.	UROPs	in	virtually	any	discipline	at	MIT)	and	in	their	future	careers.	By	
increasing	exposure	to	computational	thinking	to	include	all	members	of	the	
MIT	undergraduate	student	body,	access	to	such	opportunities	can	be	
expanded	to	students	from	a	broader	range	of	backgrounds,	experiences,	and	
points	of	view.		This	both	opens	new	career	possibilities	for	students	and	
helps	to	increase	diversity	in	computation-related	fields	in	industry.		Further,	
as	computation	continues	to	permeate	other	disciplines,	knowledge	of	and	



	

	 10	

ability	to	use	computational	tools	will	become	even	more	essential	to	success	
in	a	wide	range	of	fields.	To	ensure	that	our	graduates	are	well	positioned	to	
assume	leadership	roles	in	a	variety	of	disciplines	and	industries,	it	is	critical	
that	they	have	a	depth	of	understanding	of	computational	issues	and	
methods.	

	
Elements	of	computational	thinking:	
While	the	working	group	believes	that	every	undergraduate	should	gain	exposure	to	
computational	thinking,	it	is	hesitant	to	create	a	list	of	topics	in	a	form	like	a	syllabus.		
Development	of	appropriate	subjects	in	computation	may	require	specific	
sensitivity	to	disciplinary	needs,	an	investigation	that	is	beyond	the	scope	of	the	
working	group’s	charge.		However,	there	is	wide	agreement	on	the	usefulness	for	all	
students	to	develop	a	strong	understanding	of	the	following	topics:	
	

1. The	fundamental	constructs	of	computer	programming	and	their	roles	
in	abstraction.		These	would	include	the	use	of	loops	for	iteration,	as	well	as	
the	use	of	recursion	for	algorithm	design	and	implementation.		It	would	also	
include	the	use	of	basic	data	structures	such	as	lists	and	arrays,	and	the	use	
of	object	classes	as	an	abstraction	mechanism	for	encapsulating	data	and	
associated	methods	of	manipulation	and	inference.	It	would	include	the	use	
of	procedure	definition	and	specification	as	an	abstraction	method.	And	it	
would	include	the	importance	of	testing	and	debugging	in	the	creation	of	
robust	algorithms	and	implementations.	

2. Elements	of	design	for	computer	programming.			These	include	the	
importance	of	modular	design	and	the	role	of	abstraction	mechanisms	as	a	
means	of	suppressing	detail	and	supporting	system	design.		It	would	also	
include	methods	for	creating	programs	that	make	them	easier	to	share,	
understand,	test,	and	debug.		

3. Developing	skills	in	at	least	one	modern	programming	language.		This	
would	include	fundamental	skills	in	writing	and	reading	code,	debugging,	and	
related	topics.		While	it	is	theoretically	possible	to	apply	algorithmic	thinking	
without	using	programming,	the	ability	to	express	such	thinking	through	
programming	and	to	understand	how	computation	actually	works	in	society	
and	industry	is	valuable	in	itself.		

4. Understanding	and	extending	basic	classes	of	algorithms.		This	includes	
general-purpose	approaches	for	solving	difficult	problems.		Some	examples	
include:	(i)	greedy	algorithms,	(ii)	divide	and	conquer	algorithms,	(iii)	the	
use	of	randomization	and	stochastic	sampling	in	computer	algorithms,	(iv)	
hill	climbing	(or	neighborhood	search)	algorithms,	(v)	interval	bisection	
method,	and	others.	

5. Modeling	our	physical	and	social	worlds.		This	would	include	the	ability	to	
create	mathematical	and	computational	models	that	aid	in	understanding	
our	physical	and	social	worlds.		It	would	also	include	learning	the	merits	as	



	

	 11	

well	as	the	limits	of	this	type	of	modeling.		This	would	also	include	grounding	
in	methods	for	presenting	and	understanding	results	of	computational	
experiments,	such	as	visualization,	and	statistical	analysis	of	uncertainty.		

	
In	addition	to	these	elements	at	the	core	of	any	fundamental	computational	thinking	
requirement,	the	working	group	feels	strongly	that	students	should	receive	
instruction	in	extensions	of	basic	computation	elements,	and	disciplinary	
applications	to	place	the	core	concepts	within	diverse	contexts.		Some	possible	
examples	of	such	extended	topics	might	include:	
	

1. Application	of	computational	modeling	within	domain-specific	contexts.		
For	example,	the	use	of	search	algorithms	in	analyzing	genomic	data;	
modeling	the	mechanical	properties	of	objects	and	their	physical	
interactions;	predicting	patterns	of	behavior	in	large	scale	systems	
(transportation,	communication,	energy,	social);	and	others.	

2. Understanding	the	limits	of	computers.		Part	of	understanding	what	
computers	can	do	is	also	understanding	what	they	can’t	do	(or	can’t	do	yet).		
It	is	also	useful	to	use	one’s	own	knowledge	and	common	sense	to	aid	in	
knowing	when	computer	output	is	not	making	sense	or	is	not	realistic.		(This	
is	an	extension	of	recognizing	when	a	calculator	result	does	not	make	sense.)	

3. Visualization	and	non-textual	interaction.		While	many	results	of	
computational	experiments	are	captured	by	numerical	values,	often	the	
interpretation	of	those	results	is	best	done	through	other	means.		
Visualization	of	a	statistical	distribution	of	trials	of	a	computational	
experiment	is	an	important	aspect	of	understanding	computational	results.	

4. Computational	creativity.	The	use	of	computation	to	engage	and	augment	
human	creativity	in	new	ways,	enhancing	expression	in	art	and	design	
through	the	creative	application	of	algorithms	and	code.		

	
Thus,	the	working	group	unanimously	believes	that	all	MIT	undergraduate	
students	should	have	some	mastery	of	computational	thinking,	as	they	do	with	
physical,	mathematical,	biological	and	chemical	thinking,	and	as	they	do	with	
the	critical	thinking	embedded	in	the	humanities,	arts	and	social	sciences.	
	
Perception	across	the	Institute:		
Although	not	unanimous,	the	working	group	found	very	broad	support	across	the	
Institute	for	a	mechanism	by	which	all	MIT	undergraduates	would	gain	competence	
in	computational	thinking,	and	in	using	computation	(especially	through	program	
design	and	implementation)	as	a	complement	to	other	forms	of	intellectual	inquiry.		
This	support	came	from	faculty	and	students	in	all	five	schools,	although	there	were	
some	dissenting	views	(concerns	are	discussed	below).		Not	surprisingly,	there	was	



	

	 12	

strong	support	throughout	the	School	of	Engineering;	however,	there	was	also	
support	(though	not	uniform)	within	the	other	four	schools.		Colleagues	from	
disciplines	as	varied	as	Economics,	Brain	and	Cognitive	Sciences,	Physics,	Biology,	
Music,	and	Architecture	all	expressed	support	for	the	role	of	computational	thinking,	
although	we	note	that	there	were	also	some	groups	that	did	not	see	the	need	for	
inclusion	of	computational	thinking	for	students	in	their	sub-discipline.	
	
Current	coverage:	
Although	there	is	no	requirement	for	computation	that	currently	applies	to	all	
undergraduate	students,	there	is	already	wide	coverage	of	computational	concepts	
for	many	of	our	students:	

• All	8	departments	in	the	School	of	Engineering	have	an	explicit	degree	
requirement	of	a	class	(or	a	portion	of	a	class	in	one	case)	on	computation.		
While	the	specifics	of	the	subjects	(such	as	their	underlying	programming	
language	and	their	particular	focus	on	algorithm	development)	differ	across	
departments,	and	not	all	may	cover	all	elements	of	computational	thinking,	
all	subjects	require	students	to	treat	computation	not	just	as	a	tool	but	as	an	
ability	to	translate	a	logical	description	of	a	method	into	an	algorithmic	
process.	

• Currently,	one	department	in	the	School	of	Science	(Brain	and	Cognitive	
Sciences),	one	additional	degree	program	in	the	School	of	Science	
(Mathematics	with	Computer	Science),	and	one	newly	created	degree	
program	within	the	Sloan	School	of	Management	(Business	Analytics)	also	
have	an	explicit	degree	requirement	of	a	subject	on	computation.	(Previously	
the	Management	Science	degree	also	had	a	required	subject	on	computation.)	

• In	addition	to	coverage	through	degree	requirements,	many	students	take	
elective	classes	with	computational	concepts.	To	provide	a	sense	of	the	
number	of	students	already	gaining	experience	in	computational	thinking,	
we	considered	seniors	who	graduated	in	the	years	2012	to	2016.		Of	that	
group,	4017	out	of	5429	received	a	primary	degree	(not	counting	double	
majors)	in	a	department	that	currently	has	a	computational	requirement.	
This	represents	74%	of	the	total	cohort.		Of	the	remaining	1412	students,	646	
(or	46%)	took	at	least	one	of	6.0001/6.0002	or	6.01	or	1.000	or	1.00	or	2.086,	
even	though	not	required	for	their	degree	program	(these	four	courses	are	
not	the	only	options	for	gaining	experience	in	computation,	but	represent	the	
four	largest	such	options).		Thus,	out	of	5429	students,	only	766	were	not	
required	to	take	a	computation	course	and	did	not	take	one	of	the	four	large	
ones	(there	may	be	other	courses	they	did	take	that	could	be	considered	to	
satisfy	this	constraint),	meaning	that	at	most	14%	of	the	graduating	seniors	
in	this	cohort	did	not	see	computational	thinking	as	part	of	their	MIT	
education.		

One	could	argue	(and	some	faculty	members	do)	that	since	the	majority	of	MIT	
undergraduates	already	take	at	least	one	class	in	computation,	there	is	no	need	to	



	

	 13	

require	it	of	all	students.		However,	MIT	educational	requirements	are	also	a	
statement	to	our	community	and	to	the	world	of	what	MIT	believes	to	be	of	the	
utmost	importance	in	its	undergraduate	education.		The	working	group	believes	
that	computational	thinking	is	of	such	importance	as	to	merit	being	required.		
Moreover,	there	is	value	in	MIT	stating	that	all	of	its	students	learn	computational	
thinking.	In	support	of	this,	consider	the	statement	in	MIT’s	Bulletin	about	the	
Science/Math	GIRs:	

“MIT	expects	its	graduates	to	have	an	understanding	and	appreciation	of	
the	basic	concepts	and	methods	of	the	physical	and	biological	sciences.	…	
They	are	an	essential	part	of	the	background	that	MIT	graduates	bring	to	
their	roles	and	professionals	and	as	broadly	educated	citizens	in	a	world	
strongly	influenced	by	science	and	technology.”	

In	the	view	of	the	working	group,	this	statement	applies	equally	strongly	to	an	
understanding	and	appreciation	of	the	basic	concepts	and	methods	of	computation.	
	
Additional	considerations:	
	
The	charge	to	the	working	group	raised	some	additional	questions,	which	are	briefly	
addressed	below.	

i) When	in	their	career	do	we	expect	students	to	learn	computational	
thinking?		There	is	a	range	of	views	on	this	question.		However,	the	
working	group	agreed	that	ideally	students	would	gain	exposure	to	
computational	thinking	early	in	their	student	experience.		This	view	is	
shared	by	many	departments.	The	working	group	is	cognizant	of	the	
concern	of	overloading	the	first	year	with	expectations	of	subjects	to	be	
taken,	especially	since	so	many	first	year	students	undertake	most	of	the	
Science	GIR	requirements	in	that	year.		The	group	also	felt,	however,	that	
many	departments	will	expect	their	students	to	have	multiple	
experiences	with	computation	–	both	introductory	and	discipline	specific	
–	and	thus	an	early	exposure	to	foundational	concepts	would	enable	a	
more	detailed,	discipline-centric,	exploration	as	an	upperclassman.		The	
working	group	notes	that	one	of	the	options	(discussed	below)	might	
enable	this	opportunity,	by	encouraging	a	6-unit	introductory	subject	
early	in	a	student’s	career,	followed	by	a	discipline-centric	follow-on	
subject	later.	

ii) Are	comparable	requirements	in	place	at	our	peer	institutions?		The	
working	group	was	not	able	to	conduct	an	extensive	examination	of	peer	
institutions.		We	note	the	following	observations:	
a. The	only	peer	institution	that	we	are	aware	has	an	institute-wide	

requirement	of	a	subject	in	computation	is	Harvey	Mudd	College,	
which	describes	itself	as	a	science,	engineering	and	mathematics	
liberal	arts	college	(all	nine	of	its	majors	are	in	science,	engineering	or	
mathematics).		We	are	not	aware	of	any	other	peer	institution	that	has	



	

	 14	

an	institute-wide	requirement	of	a	subject	in	computational	thinking.		
Many	institutions	have	introduced	introductory	computation	courses	
intended	for	“non-majors”	and	encourage	their	students	to	take	such	
courses,	but	none	of	which	we	are	aware	require	such	participation.	

b. Some	Schools	of	Engineering	at	peer	institutions	do	have	a	
computation	requirement,	as	do	some	peer	institutions	with	separate	
Schools	of	Computation,	or	Schools	of	Information	Science	(e.g.,	
Cornell,	Georgia	Tech,	Carnegie	Mellon).		Interestingly,	it	appears	that	
not	all	engineering	departments	at	Stanford	have	a	specific	
computation	course	requirement,	whereas	all	engineering	
departments	at	UC	Berkeley	and	all	engineering	departments	at	
Cornell	do	have	such	an	explicit	course	requirement.			

In	general,	we	note	that	while	we	are	not	aware	of	peer	institutions	with	
specific	institute-wide	computation	requirements,	we	do	observe	that	many	
such	institutions	are	moving	towards	encouraging	students,	especially	in	
science	and	engineering,	to	acquire	computational	skills	(for	example,	
currently	the	most	popular	course	at	Harvard	is	CS50	–	introduction	to	
computation).		Given	these	trends,	there	is	an	opportunity	for	MIT	to	lead	the	
way	in	formalizing	the	expansion	of	education	in	computational	thinking	to	
include	the	entire	undergraduate	student	body.	

	
Concerns	raised	by	members	of	the	community	
	
Members	of	the	community	raised	many	thoughtful	comments	and	questions.		We	
discuss	these	below:	

1. To	the	extent	that	there	was	resistance	to	a	required	computational	thinking	
experience,	this	was	generally	centered	on	the	impact	of	adding	a	
requirement	on	top	of	other	existing	requirements,	especially	the	current	
Science	GIR	subjects.		The	working	group	agrees	that	MIT	students	cannot	
simply	add	another	graduation	requirement	without	negatively	impacting	
their	work	and	lives.	We	believe	that	any	implementation	of	a	change	in	
requirements	must	consider	the	impact	of	potential	changes	on	other	parts	
of	the	MIT	education	and	the	intellectual	benefits	of	an	educational	
experience.		This	is	discussed	in	more	detail	below.	

2. While	many	colleagues	feel	that	computational	thinking	should	be	an	integral	
part	of	every	student’s	undergraduate	experience	at	MIT,	many	also	feel	that	
a	discussion	of	changes	in	requirements	should	consider	the	broader	
question	of	other	potential	additions	or	changes.		More	specifically,	the	
working	group	heard	suggestions	that	just	as	computation	has	become	an	
essential	element	in	virtually	every	intellectual	discipline	at	MIT,	so	too	has	
statistics,	probability	and	reasoning	under	uncertainty.		While	a	discussion	of	
the	role	of	statistical	reasoning	in	our	curriculum	is	beyond	the	scope	of	this	
working	group’s	charge,	the	group	acknowledges	that	there	is	merit	in	
considering	the	role	of	such	a	mode	of	thought	in	the	MIT	undergraduate	



	

	 15	

educational	experience.		But	the	working	group	also	believes,	especially	since	
such	a	large	percentage	of	our	undergraduates	already	take	at	least	one	
computation	class,	the	Institute	should	move	forward	in	considering	possible	
implementation	mechanisms	for	adding	a	formal	requirement	to	the	
curriculum.		

3. As	noted	above,	a	large	portion	of	recent	graduating	classes	have	taken	a	
computation	class,	either	because	it	is	a	departmental	degree	requirement,	
or	because	of	a	personal	interest	in	the	area.		In	light	of	this,	some	faculty	and	
students	have	questioned	the	need	to	incorporate	a	specific	requirement	for	
all	students.		Why	should	we	require	that	every	student	take	a	subject	in	
computational	thinking?		Why	not	let	individual	departments	determine	
what	is	best	for	their	students?	In	principle,	the	same	argument	could	be	
applied	to	current	science	General	Institute	Requirements.		Since	most	
students	would	presumably	take	basic	courses	in	calculus,	physics,	and	
perhaps	biology	and	chemistry,	why	require	that	all	students	do	so?			
	
That	topic	has	been	debated	at	the	Institute	in	the	past,	including	as	part	of	
the	Silbey	report	on	the	General	Institute	Requirements.		The	generally	
accepted	rationale	for	requiring	all	students	to	have	competency	in	
mathematics	and	sciences	is	that	the	modes	of	thought	associated	with	those	
disciplines	are	important	to	understanding	the	world	and	the	challenges	
confronting	it.		Many	of	our	undergraduates	will	not	use	the	specific	elements	
of	an	introductory	subject	in	biology	or	chemistry	in	any	of	their	department-
specific	requirements,	but	the	Institute	feels	that	knowledge	of	biological	
reasoning	is	important	to	the	broader	education	of	all	of	our	students.		The	
question	is	whether	the	Institute	also	believes	that	computational	reasoning	
rises	to	the	same	level	of	importance	–	that	every	student	should	be	able	to	
understand	computational	approaches	to	physical,	biological,	or	social	
challenges,	that	every	student	should	understand	the	impact	of	
computational	approaches	in	addressing	such	challenges,	and	that	every	
student	should	understand	how	computational	agents	are	changing	virtually	
every	aspect	of	modern	life.		The	working	group	unanimously	believes	this	to	
be	case	–	that	computational	thinking	is	as	essential	a	tool	for	every	student	
as	is	scientific	thinking.		While	not	every	student	or	faculty	member	agrees,	
the	response	to	the	draft	report	and	the	feedback	acquired	by	the	working	
group	strongly	suggests	that	that	a	substantial	majority	of	the	community	
also	supports	this	perspective.	

4. A	question	was	raised	about	how	our	alumni	and	alumnae	perceive	the	need	
for	or	value	of	exposure	to	computational	thinking	in	their	career	paths.		
Although	unfortunately	we	do	not	have	explicit	data	from	recent	
alumni/alumnae	surveys	on	the	role	of	computation	in	their	careers,	we	have	
anecdotal	feedback	that	suggests	a	strong	sense	of	the	need	for	computation,	
across	a	wide	range	of	professions.		Individual	responses	to	the	draft	report,	
as	well	discussions	with	alumni/alumnae	in	other	settings	strongly	support	
the	role	of	understanding	computation	as	an	important	element	in	their	
careers.		



	

	 16	

5. A	similar	question	was	raised	about	the	perspective	of	employers	on	the	
need	for	all	MIT	undergraduate	students	to	have	significant	exposure	to	
computational	methods.		While	no	explicit	survey	of	employers	has	been	
conducted,	a	variety	of	indirect	measures	suggest	that	there	is	a	strong	
interest	in	such	exposure.		These	include	the	distribution	of	companies	that	
regularly	participate	in	the	annual	career	fair	–	a	distribution	that	includes	
not	only	a	very	large	presence	of	information	technology	companies,	but	also	
a	large	array	of	other	companies	explicitly	seeking	graduates	with	
backgrounds	in	other	disciplines	who	have	exposure	to	computational	
methods.		Additionally,	demand	from	pharmaceutical	companies,	banks,	
investment	firms,	biotechnology	companies,	medical	device	companies,	
consulting	companies,	and	others,	for	students	with	both	a	disciplinary	
knowledge	of	the	sector	and	a	background	in	computation	is	very	strong,	as	
evidenced	by	the	hiring	patterns	of	these	companies	and	their	expressed	
interest	in	MIT	graduates.	

6. Although	the	role	of	computational	thinking	in	the	sciences,	in	management,	
and	in	the	engineering	disciplines	is	well	accepted,	some	students	have	
questioned	the	importance	of	computational	thinking	in	the	humanities,	arts	
and	social	sciences.			While	the	working	group	believes	that	the	arguments	
put	forward	for	why	every	student	should	understand	computation	apply	to	
the	humanities	as	well	as	to	the	natural	sciences,	the	group	also	notes	that	
there	are	many	areas	of	the	humanities,	arts	and	social	sciences	with	natural	
interactions	with	computational	thinking:	economics,	finance,	linguistics,	and	
others.		But	more	generally,	the	working	group	stresses	that	computational	
thinking	is	not	just	about	computational	tools	and	their	impact	on	work	in	a	
discipline,	it	is	also	about	the	impact	that	computation	has	in	the	framing	of	
questions	within	a	discipline.		The	group	notes	that	many	areas	of	humanities,	
arts	and	social	sciences	are	already	being	changed	by	the	emergence	of	
computation	–	as	a	means	of	social	interaction,	as	a	facilitator	of	new	modes	
of	communication,	as	a	curation	mechanism	for	digital	and	other	material,	
and	as	an	influence	on	the	central	elements	of	disciplines.		Thus	knowledge	of	
computation	is	likely	to	be	of	import	in	all	of	our	academic	disciplines.	

	
	
Potential	options	for	satisfying	a	computation	requirement	
	
Although	the	working	group	was	not	explicitly	charged	with	devising	an	
implementation	plan,	we	were	asked	to	articulate	possible	options	for	meeting	the	
need	for	a	common	computational	experience,	including	discussion	of	the	strengths	
and	weaknesses	of	such	options.		We	do	so	below.			
	
However,	the	working	group	also	notes	that	any	discussion	of	adding	a	general	
requirement	for	our	undergraduate	students	may	be	best	implemented	if	it	
happened	in	the	context	of	a	larger	discussion	of	the	General	Institute	Requirements.		
While	many	faculty	members	view	computation	as	a	critical	mode	of	thought,	there	
are	other	topics	that	may	merit	similar	consideration.		In	particular,	members	of	the	



	

	 17	

working	group	and	many	faculty	members	have	proposed	examining	the	state	of	
instruction	and	importance	of	statistical	thinking	and	reasoning	under	uncertainty.		
Thus,	the	working	group	encourages	the	Institute	to	consider	any	discussion	of	
possible	inclusion	of	a	computation	requirement	within	the	broader	context	of	all	
Institute	requirements.	
	
Given	that	such	a	broad	discussion	may	not	occur	immediately	or	even	in	the	
medium	term,	the	working	group	will	discuss	options	for	balancing	a	new	
computational	requirement	with	a	reduction	in	other	requirements	(specifically	the	
REST	requirement)	below.	
	
The	working	group	lists,	but	does	not	necessarily	endorse,	each	of	the	following	
possible	options	for	satisfying	a	computational	thinking	requirement,	while	noting	
that	there	may	be	other	possibilities	(for	example,	the	group	discussed	the	option	of	
integrating	computation	as	a	module	into	existing	GIR	subjects,	either	directly	or	as	
an	online	module,	but	concluded	that	these	options	were	not	compatible	with	the	
amount	of	material	to	be	covered	and	the	advantages	of	having	that	material	taught	
by	a	faculty	member	with	a	computational	background).	The	three	options	that	the	
committee	discussed	at	length	were:	
	

1. A	single,	Institute-wide,	subject:	
a. Description:	

i. The	Institute	would	create	a	single	subject	(or	revise	an	
existing	subject)	that	incorporates	commonly	accepted	
elements	of	computational	thinking	including	programming	
skills.	

b. Advantages:			
i. The	development	of	a	subject	focused	on	a	computational	
experience	for	all	students	would	ensure	that	key	concepts	are	
presented	to	all	students	in	a	similar	manner.	

ii. As	with	several	of	the	other	Institute	wide	requirements,	there	
would	be	a	shared	experience	for	all	students.	

iii. This	would	allow	a	focus	on	computation	as	a	mode	of	thought,	
separate	from	embedding	of	computation	in	domain-specific	
contexts.	

c. Challenges:			
i. Students	have	vast	differences	of	prior	experience	in	
computational	work,	especially	programming,	potentially	
leaving	some	students	discouraged	and	overwhelmed	and	
some	other	students	bored	and	disengaged.	

ii. Giving	students	the	option	of	passing	out	of	the	subject	would	
address	the	latter	issue,	but	would	also	exacerbate	differences	
in	the	“real”	number	of	requirements	to	graduate	that	already	
exist	in	other	GIRs	(for	instance,	because	of	prior	Calculus	
experience	or	credits	from	AP	classes).	The	requirement	would	
disproportionately	fall	on	students	from	high	schools	with	



	

	 18	

lower	academic	standards	who	already	face	additional	
difficulties.	

iii. A	single	subject	could	not	cover	all	the	basic	and	extended	
topics	discussed	above,	and	thus	students	might	not	be	
guaranteed	exposure	to	modes	of	computational	thinking	most	
relevant	to	their	own	disciplines	and	interests.	

d. Recommendation	
i. Given	the	challenges	above,	the	working	group	declines	to	
endorse	this	option.	

2. A	subject	that	is	designed	for	a	major,	or	subjects	that	are	designated	as	
suitable	for	a	major:	

a. Description:	
i. A	department	would	either	develop	a	computation	course	
specific	to	the	interests	of	their	students	or	use	a	subject	
offered	by	another	department.	

ii. This	approach	would	be	similar	to	the	current	CI-M	
communication	requirement,	wherein	specific	skills	are	taught	
in	the	context	of	a	major.	

b. Advantages:	
i. Students	would	have	the	opportunity	to	see	computation	in	a	
context	that	is	particularly	appealing	to	them,	thereby	
increasing	the	utility	of	learned	concepts	in	future	educational	
experiences.	

ii. Embedding	the	introduction	of	computation	within	a	specific	
field	has	the	potential	to	increase	student	engagement,	since	it	
would	appear	in	contexts	of	interest	to	the	student.	

c. Challenges:	
i. Some	coordination	of	offerings	would	be	required,	to	ensure	
that	subject	offerings	by	individual	departments	were	meeting	
the	goals	of	the	requirement.	This	would	include	ensuring	that	
core	fundamental	concepts	are	covered	by	all	such	offerings	at	
an	appropriate	depth	and	level.	A	structure	such	as	SOCR	
(Subcommittee	on	the	Communication	Requirement)	might	be	
required	to	provide	an	ongoing	MIT-wide	perspective	as	this	is	
accomplished.	

ii. Departments	wishing	to	offer	instruction	in	focused	and/or	
advanced	computational	thinking	would	need	to	either	teach	
basic	programming	skills	(requiring	additional	teaching	
resources)	or	require	a	prerequisite	basic	programming	class	
thereby	extending	the	real	reach	of	the	requirement.	

iii. Some	departments	may	not	feel	capable	of,	or	have	the	
resources	to,	develop	specific	computation	courses.		This	could	
be	addressed	by	providing	additional	resources,	or	by	
encouraging	collaboration	with	departments	with	experience	
in	teaching	computation.		

d. Recommendation	



	

	 19	

i. The	working	group	believes	that	this	option	is	worth	
considering	in	more	detail.	

3. An	interdepartmental	computational	thinking	requirement	followed	by	
a	disciplinary	computational	thinking	class.	

a. Description	
i. The	first	part	of	the	requirement	would	be	satisfied	by	a	small	
group	of	6-unit,	probably	half-term	subjects	that	give	an	
introduction	to	computational	thinking	(offered	at	different	
levels--from	no	prior	knowledge	to	advanced	programming).		
Students	would	not	be	able	to	waive	this	requirement,	so	even	
students	with	extensive	prior	programming	experience	would	
take	a	class	aimed	at	their	level	of	background.	

ii. The	second	part	of	the	requirement	would	be	satisfied	by	an	
upper	level	class,	which	could	be	part	of	a	department’s	
requirements,	that	uses	computational	thinking	as	a	part	of	the	
modes	of	thinking	and	learning	in	a	specialized	field.	

iii. The	second	requirement	could	be	a	stand-alone	6-unit	class	or	
as	part	of	a	larger	unit	subject	that	offers	substantial	
computational	thinking	instruction.	

iv. The	division	between	general	and	specific	instruction	would	be	
comparable	to	the	division	between	CI-H	and	CI-M	classes	in	
the	communication	requirement,	while	the	ability	to	embed	
six-units	of	computational	thinking	within	a	larger	class	finds	
an	analogy	in	certain	lab	courses	that	provide	six	units	of	lab	
credit	within	a	12	unit	class.		

b. Advantages	
i. By	offering	an	interdisciplinary	subject	followed	by	a	discipline	
specified	subject,	students	would	acquire	knowledge	and	
modes	of	thinking	that	would	be	both	flexible	and	narrowly	
tailored	to	a	specific	domain.	

ii. Skills	in	computational	thinking	in	the	interdisciplinary	subject	
could	be	paired	with	classes	with	differing	levels	of	
programming	experience	creating	a	challenging	but	rewarding	
requirement	for	students	of	all	backgrounds.	

iii. By	requiring	one	or	both	parts	of	the	requirement	as	a	
prerequisite,	departmental	subjects	could	be	offered	that	can	
assume	knowledge	of	computational	algorithms	and	
programming	skills,	allowing	advanced	topics	to	be	offered	
more	easily	than	they	can	be	now.	

c. Challenges	
i. Although	no	department	or	unit	would	be	required	to	create	its	
own	disciplinary	subject,	some	departments	may	wish	to	do	so	
but	may	be	limited	in	their	resources	or	their	ability	to	develop	
such	a	class.		Collaboration	with	other	departments	to	develop	
appropriate	subjects	or	using	an	existing	subject	offered	by	
another	department	are	possible	solutions	to	this	issue.	



	

	 20	

ii. The	two-part	requirement	is	sufficiently	complex	that	
additional	advising	and	education	about	the	requirement	
would	be	necessary.	

iii. At	least	initially,	an	oversight	committee	similar	to	SOCR	would	
need	to	be	created	to	determine	whether	subjects	fulfill	the	
goals	and	expectations	of	computationally	rigorous	thinking.	

d. Recommendation	
i. The	working	group	believes	that	this	approach	offers	myriad	
advantages	and	the	challenges	are	of	a	manageable	size.		It	
recommends	that	implementation	details	be	carefully	explored,	
including	impact	on	overall	student	load,	resource	
requirements,	and	other	implications	of	creating	and	offering	
such	subjects.	

	
Mitigation	of	Total	Requirements	
	
All	of	the	options	that	the	working	group	listed	above,	which	were	the	only	choices	
we	felt	gave	a	worthwhile	introduction	to	computational	thinking,	add	12	units	of	
requirements	to	the	existing	MIT	GIRs.		Given	how	tightly	the	curriculum	already	
constrains	student	choice,	this	would	be	challenging.			
	
An	option	studied	in	the	past	would	be	to	add	an	additional	GIR,	but	allow	students	
to	select	6	of	7	GIR’s	(while	allowing	departments	to	specify	a	subset	of	the	GIR’s	as	
required	for	students	choosing	to	major	in	that	department).	This	option	was	
previously	explored	by	the	Silbey	committee,	and	may	merit	revisiting.		However,	
the	working	group	notes	that	this	would	run	counter	to	the	desire	to	have	all	
students	acquire	a	command	of	computational	modes	of	thinking.	
	
A	second	option,	that	was	much	more	appealing	to	the	working	group,	is	to	use	one	
of	the	two	current	REST	requirements	as	a	computation	requirement.		Many	existing	
Courses	already	designate	a	required	REST	subject	that	teaches	some	or	all	of	the	
modes	of	computational	thinking	described	above.	However,	we	note	that	many	
department	degree	requirements	already	“capture”	one	or	two	REST	subjects	for	
different	reasons.		Thus,	a	careful	study	on	the	impact	of	allocating	a	REST	subject	to	
computation	on	departmental	degree	requirements	would	be	needed	by	a	future	
implementation	group.	
	
An	associated	issue	that	will	need	careful	consideration,	if	the	decision	to	implement	
a	computational	requirement	for	all	students	is	made,	is	the	impact	of	adding	a	
degree	requirement	to	ABET	accreditation	of	engineering	departments.		Many	
engineering	departments	use	REST	subjects	or	current	departmental	subject	to	
meet	the	constraints	of	professional	accreditation	of	degree	programs;	thus	any	
proposed	changes	to	institute	requirements	will	need	to	carefully	consider	the	
impact	of	different	options	on	the	ability	of	departments	to	preserve	their	
accreditation	status.	
	



	

	 21	

Summary	
	
The	working	group	unanimously	believes	that	computational	thinking	is	an	
essential	part	of	the	educational	experience	for	every	undergraduate	student	at	the	
Institute.		This	is	based	on	the	view	that	computational	thinking	provides	a	new	
intellectual	mode	of	thought	of	relevance	to	virtually	every	intellectual	discipline	
and	that	computational	thinking	requires	and	develops	important	modes	of	
communication.		These	factors	are	in	addition	to	the	pragmatic	advantages	that	
computational	tools	might	give	at	MIT	or	in	professional	life.		The	working	group	
recommends	that	the	Institute	proceed	with	a	consideration	of	mechanisms	by	
which	a	computation	requirement	could	be	instituted	for	all	undergraduate	
students,	while	addressing	the	impact	adding	an	additional	degree	requirement	
would	have	on	student	load	and	the	need	to	connect	computational	thinking	to	
domain-specific	contexts	across	different	intellectual	disciplines.	
	
Submitted	by:	

• Eric	Grimson,	EECS,	Chair	
• Deepto	Chakrabarty,	Physics	
• Michael	Scott	Cuthbert,	Music	and	Theater	Arts	
• Peko	Hosoi,	Mechanical	Engineering	
• Caitlin	Mueller,	Architecture	
• James	Orlin,	Sloan	
• Troy	Van	Voorhis,	Chemistry	
	 	



	

	 22	

Appendix:	
	
The	full	charge	to	the	committee	follows:	
	

Study	Group	on	Algorithmic	and	Computational	Thinking	for	MIT	
Undergraduates	

	
Charge	

	
For	many	years,	at	least	since	the	2004-2006	Taskforce	on	the	Undergraduate	
Educational	Commons	chaired	by	Prof.	Robert	Silbey,	various	MIT	faculty	members	
have	asked	whether,	and	if	so	how,	MIT	should	ensure	that	all	its	undergraduates	
learn	algorithmic	reasoning	and	computational	thinking.	To	answer	this	question,	
we	are	charging	a	small	group	of	faculty	to	conduct	an	in-depth	study	of	what	the	
phrases	“algorithmic	reasoning”	and	“computational	thinking”	mean	in	the	context	
of	the	education	of	MIT’s	undergraduates	across	all	five	schools.	
	
In	conversation,	many	colleagues	who	have	thought	about	this	issue	are	clear	in	
saying	that	these	phrases	should	mean	more	than	an	introduction	to	programming	
languages.	As	a	place	to	begin	this	study,	we	believe	that	computational	thinking	
should	encompass	an	intellectual	framework,	not	just	a	skill.	Phrases	that	were	used	
in	the	Silbey	report	include	“computational	modes	of	analysis”,	“algorithmic	
reasoning”,	“data	abstraction”,	“designing	computational	solutions	to	theoretical	and	
practical	problems”,	and	“providing	a	computational	paradigm	for	reasoning	and	
problem	solving.”	We	are	asking	you	to	do	a	careful,	deliberative	assessment	of	what	
these	and	other	phrases	(“abstraction	and	complexity”,	“modularity	and	interfaces”,	
“complexity	of	algorithmic	solutions”,	“algorithmic	paradigms”)	mean	across	MIT.	
	
Questions	that	we	would	ask	you	to	examine	include:	
	
1)	How	do	faculty,	students	and	alumni	in	different	fields	of	endeavor,	across	the	full	
breadth	represented	by	MIT’s	five	schools,	use	computational	thinking?	Is	it	an	
important	mode	of	thinking	in	(for	example)	economics,	policy	formation,	
management,	architecture,	biology	and	biological	engineering,	chemistry	and	
chemical	engineering,	and	other	disciplines?	
	
2)	What,	if	any,	is	the	common	intellectual	framework	that	people	across	MIT	
employ	when	they	speak	of	computational	thinking	and	algorithmic	reasoning?	In	
what	ways	is	diversity	among	the	meanings	of	such	phrases	in	different	disciplinary	
contexts	important?	
	
3)	To	what	extent	are	algorithmic	reasoning	and	computational	thinking	already	
being	taught?	What	fraction	of	our	graduates,	across	all	five	schools,	learn	them	in	
the	course	of	meeting	the	explicit	requirements	of	their	majors?	What	fraction	take	
a	course	that	covers	computational	thinking	even	if	not	an	explicit	requirement	of	
their	majors?	To	what	extent	and	in	what	ways	do	we	already	implicitly	expect	that	



	

	 23	

a	broad	spectrum	of	MIT	undergraduates	across	many	majors	understand	
algorithmic	and	computational	thinking	by	the	time	they	graduate	from	MIT?	When	
in	their	career	at	MIT	do	we	expect	students	to	learn	computational	thinking?	
	
4)	Should	we	acknowledge	algorithmic	and	computational	thinking	as	an	explicit	
expectation	of	all	our	graduates?	If	yes,	what	is	the	rationale/case	for	this?	
	
5)	If	yes,	what	are	the	key	elements	of	algorithmic	and	computational	thinking	and	
what	are	the	associated	learning	objectives	and	measurable	outcomes	for	
knowledge,	skills	and	attitudes?	How	are	they	common	across	the	broad	spectrum	
of	MIT	undergraduates,	and	how	do	they	differ?	Across	MIT,	how	are	they	relevant	
to	solving	problems	and	mastering	endeavors?	
	
6)	If	yes,	does	it	matter	when	during	their	careers	at	MIT	our	students	are	exposed	
to	computational	thinking	and	algorithmic	reasoning?	What	benefits	would	accrue	
from	a	uniform	approach	to	teaching	them	and	what	might	the	downsides	be?	What	
benefits	would	accrue	from	discipline-specific	approaches	and	what	might	the	
downsides	be?	
	
7)	What	are	our	peer	institutions	doing?	Are	there	possible	models	outside	MIT	that	
merit	our	consideration?	
	
As	you	start	to	formulate	your	answers	to	the	questions	above,	we	would	ask	that	
you	develop	a	list	of	possible	options	for	accomplishing	the	goals	for	the	
computational	education	of	MIT	undergraduates	that	you	articulate,	if	these	goals	
are	not	already	being	met.	Please	describe	each	such	option	as	concretely	as	you	can,	
including	pros	and	cons,	including	which	goals	among	those	you	articulate	each	
option	addresses,	and	including	actionable	next	steps.	Examples	of	options	that	you	
might	consider	include:	
	

i) Modules,	with	or	without	online	components,	that	could	be	incorporated	
within	MIT’s	existing	GIR	subjects.	

ii) New	subjects	or	modules	with	no	prerequisites,	ranging	in	duration	from	
one	month	to	one	semester,	whose	development	and	teaching	may	
involve	collaboration	among	departments	and	other	academic	units.	

iii) A	model	for	teaching	computational	thinking	along	the	lines	of	how	CI-M	
subjects	teach	communication,	where	each	major	can	make	discipline-
specific	choices	for	how	to	achieve	overarching	MIT-wide	goals	that	you	
have	articulated,	via	more	advanced	subjects	or	modules	designed	for	
students	in	the	specific	major.	

	
The	first	two	are	examples	of	options	where	next	steps	would	include	curriculum	
development.	For	such	options,	we	hope	that	you	will	provide	preliminary	examples	
of	partial	syllabi,	with	explanations	of	your	rationales	for	the	elements	in	these	
syllabi,	and	a	sense	of	the	(groups	of)	colleagues	who	might	be	asked	to	develop	the	
curricula.	That	is,	these	are	examples	of	options	that	we	would	hope	you	develop	to	



	

	 24	

the	point	that	the	next	step	could	be	Dean	Freeman	pulling	together	people	and	
resources	for	implementation.	The	third	is	an	example	of	an	option	where	your	
study	might	prompt	some	departments	to	initiate	next	steps,	perhaps	with	support	
from	Dean	Freeman.	All	are	examples	of	options	where	the	next	steps	would	include	
consideration	by	a	broader	group	of	faculty,	including	relevant	faculty	committees.	
	
We	are	convinced	that	a	deep	study	as	described	above	is	a	key	step	toward	
evaluating	whether	or	not	changes	to	MIT’s	undergraduate	curriculum	and	
pedagogy	are	merited.	Depending	on	your	findings,	your	study	may	provide	the	
foundation	for	subsequent	advances	in	how	we	educate	our	students.	We	are	asking	
you	to	focus	on	questions	as	above	and	on	options	with	near-term	actionable	next	
steps.	We	hope	that	the	answers	that	your	study	provides,	together	with	any	
subsequent	curriculum	development	that	it	prompts,	will	serve	as	valuable	input	to	
any	future	discussion	of	our	GIRs.	
	
We	would	ask	that	you	set	as	your	goal	that	by	June	30,	2016	you	have	completed	
the	majority	of	your	work	and	reported	your	progress	and	your	emerging	
conclusions	to	us,	so	that	by	that	date	we	have	a	full	understanding	of	what	remains	
for	you	to	do,	and	a	firm	late-summer	or	early	September	deadline	for	your	report.	
	
Sincerely,	
	
Prof.	Dennis	Freeman	
Dean	for	Undergraduate	Education	
	
Prof.	Krishna	Rajagopal	
Chair	of	the	MIT	Faculty	
———————————	
Membership:	
	
Eric	Grimson,	Chair,	EECS	
Deepto	Chakrabarty,	Physics	
Michael	Cuthbert,	Music	and	Theater	Arts	
Peko	Hosoi,	Mechanical	Engineering	
Caitlin	Mueller,	Architecture	
Jim	Orlin,	Sloan	
Troy	van	Voorhis,	Chemistry	


